Вход на сайт

Телефон: +7 (495) 771-25-50

e-mail: pr@mastermodel.ru

Приборы и методы для определения качества поверхностей

Поверхность готовой детали не всегда является идеально ровной, гладкой и геометрически правильной. Она так или иначе будет отличаться от заданных чертежом (номинальных параметров) определенными микро- и макро геометрическими отклонениями. Макрогеометрические отклонения определяют волнистость и отклонения формы поверхности детали, а микрогеометрические отклонения ее шероховатость. Четкого физического различия между этими погрешностями не существует, но  их все же условно разделяют по отклонению шага (S) к значению отклонения (D) от номинального контура (заданного чертежом). Таким образом, если неровности поверхности меньше 40 (S/D<40) ,  их относят к шероховатости. Если неровности больше 40 (S/D>40), то их относят к волнистости. Отклонением формы считается отношение шага к значению отклонения больше 1000 (S/D>1000).

В различных странах для определения шероховатости и волнистости поверхности  используют разные методы. В данной статье приведены лишь самые известные из них.

 

Методы и приборы для измерения шероховатости

Существуют два основных метода, позволяющих определить шероховатость поверхности изделия - оптический и механический.

 

Механический метод (щуповой) основан на работе специального прибора профилометра. Это достаточно дорогое и хрубкое устройство. Одно из его недостатков – это непосредственный контакт с поверхностью. Это может привести к появлению царапин на поверхности исследуемой детали, а в результате прибор может неточно оценить наличие шероховатостей.

 

Оптический метод позволяет исследовать поверхность бесконтактным способом. Такие устройства считывают информацию о наличии шероховатости благодаря отражению света от поверхности детали. При чем, считанная информация автоматически обрабатывается с помощью компьютера.  Реализация оптических методов не требует больших финансовых вложений, высокой точности, каких-либо сложных оптических или механических устройств. Обработка данных компьютером существенно ускоряет процесс, поэтому оптические методы измерения шероховатости могут быть применены в условиях непрерывного производства.

 

Ниже представлена работа двух приборов, использующих оптические методы для измерения шероховатости:

  1. Принцип работы прибора I

Это устройство использует в своей работе метод микроинтерференции. При измерении на шероховатой структуре поверхности образуются помехи. Направление шероховатых участков совпадает с направлением помех. Если диапазон частот этих помех совпадает с частотой встречаемости шероховатостей, свет отражается от  неровностей, показывая минимальную и максимальную интенсивность. Благодаря изменению диапазона частоты помех и синхронного измерения интенсивности светового отражения от неровной поверхности можно получить  интерференционную картину шероховатости, ориентируясь на максимальную или минимальную интенсивность светового отражения.

  1. Принцип работы прибора II

Это устройство использует в своей работе метод светового сечения. Световой луч из точечного источника скользит по неровной поверхности и отражается от нее. С помощью отраженного светового луча можно определить размер и распространение неровностей. Для определения размера шероховатостей необходимо сравнить интенсивность светового отражения в зеркальном и любом другом направлениях.

 

Методы и приборы для измерения волнистости

 

За рубежом волнистость определяется в соответствии со стандартами ISO (ISO 4287 и ISO 16610-21), а также согласно американскому стандарту ASME B46.1.

Измерения волнистости поверхности проводятся с помощью специальных профилометров и  приборов для измерения шероховатости.  То есть, с помощью стилуса (контактный щуповой метод) и с помощью бесконтактных оптических и лазерных приборов. Самым простым прибором, используемым для оценки волнистости поверхности,можно назвать волнометр (микротопограф). Волнометр  использует пластиковый наконечник, собирающий информацию о состоянии поверхности детали. Собранные данные регистрируются в виде электронных сигналов высокого и низкого диапазонов. Таким образом, исследуя шарикоподшипник, сигнал низкого диапазона  - 4-17  колебаний при каждом измерении, а сигнал высокого диапазона – 17- 3390 раз при каждом измерении (низкий сигнал означает наличие волнистости). Затем полученные сигналы передаются в осциллограф для анализа.

В России для определения волнистости используются приборы профилографы-профилометры. Эти устройства могут механически изучать поверхность и записывать полученные результаты в графическом варианте (круглограмма).

Также зачастую используется метод обнаружения микроволн на поверхности с помощью анализа записи магнитного диска (используется в качестве экспресс-теста для получения моментальных данных). Прибор для измерения волнистости с помощью этого метода состоит из: диска, двигающейся головки, детектора и программного или аппаратного обеспечения, которое фиксирует  изменения на поверхности детектора при вращении диска по поверхности детали. В этом случае детектор является пьезоэлектрическим преобразователем. На поверхности изделия возникает электрическое напряжение. Сигнал на поверхности увеличивается с увеличением линейной скорости вращения диска. Сигнал на поверхности изделия коррелирует с микроволнистостью, таким образом, производится оптическое исследование поверхности изделия. Диск осуществляет магнитную запись. Детектор улавливает резонанс, который создают микроволнистость и потоки воздуха при вращении диска. Так определяется наличие микроволнистости и шероховатости на поверхности изделия.

Лазерный метод – один из простых и популярных методов исследования качества поверхности материала (детали). Например, компания Chapman Instrument Incorporated, предлагает прибор для определения шероховатости и волнистости. Его принцип действия основан на бесконтактном (оптическом) изучении поверхности линз, зеркал или призм. Мощный сканер считывает информацию с исследуемого материала на все 360 градусов. Благодаря этому прибору довольно легко определить размер и длину микроволн, которые не видны невооруженным глазом.